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We consider the kinematic dynamo problem for a velocity field consisting of a
mixture of turbulence and coherent structures. For these flows the dynamo growth
rate is determined by a competition between the large flow structures that have large
magnetic Reynolds number but long turnover times and the small ones that have
low magnetic Reynolds number but short turnover times. We introduce the concept
of a quick dynamo as one that reaches its maximum growth rate in some (small)
neighbourhood of its critical magnetic Reynolds number. We argue that if the coherent
structures are quick dynamos, the overall dynamo growth rate can be predicted by
looking at those flow structures that have spatial and temporal scales such that their
magnetic Reynolds number is just above critical. We test this idea numerically by
studying 2.5-dimensional dynamo action which allows extreme parameter values to
be considered. The required velocities, consisting of a mixture of turbulence with a
given spectrum and long-lived vortices (coherent structures), are obtained by solving
the active scalar equations. By using spectral filtering we demonstrate that the scales
responsible for dynamo action are consistent with those predicted by the theory.

1. Introduction
Magnetic fields are ubiquitous in astrophysics and are believed to be generated by

hydromagnetic dynamo action (Parker 1979). There are two fundamental questions
that are addressed by dynamo theory: one is linear (kinematic) and is concerned
with the nature of the dynamo growth rate for a given flow. The other is nonlinear
(dynamic) and seeks to determine the amplitude of the generated magnetic field.
In most cases the presence of magnetic fields is associated with turbulent flows.
This has led to the idea that turbulence and dynamo action go hand-in-hand. In
particular, in the kinematic case which is the subject of this paper, it has led to the
belief that there is a straight-forward relationship between the statistical properties
of the turbulence, as described by its spectrum function, and the dynamo growth rate
(Batchelor 1950; Saffman 1963; Kraichnan & Nagarajan 1967). For the idealized case
of a completely random flow this is probably true (Kazantsev 1968; Vainshtein &
Kichatinov 1986). However most turbulent physical flows are not completely random.
High-Reynolds-number flows can be complicated and consist of a superposition of
random motions and coherent structures. The random eddies are characterized by
motions on many different spatial scales with different characteristic lifetimes and
turnover times whilst the coherent structures are typically stable long-lived elements
in the flow (such as vortex tubes) that contain non-trivial phase information. Often
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the coherent structures themselves occupy a wide range of spatial and temporal
scales. The ‘ratio’ of coherent structures to random eddies in a turbulent flow varies
depending on the context; geophysical and astrophysical flows that are influenced
by rotation and stratification tend to be dominated by coherent structures whilst
laboratory flows such as grid turbulence have a large random component and the
coherent structures are more intermittent. It is natural to speculate which aspects of
the turbulent flow are most important for dynamo action, which scales of motion
determine the dynamo growth rate and what is the typical scale of a turbulence-
generated magnetic field. Moreover does the presence of coherent structures modify
the dynamo properties of the turbulence?

In this paper we argue that in those circumstances where the flow consists of a
superposition of random turbulence and coherent structures the kinematic dynamo
properties can be controlled by the coherent structures. Since the latter are not
adequately described by the velocity spectrum, knowledge of the spectrum alone is
not enough to determine the dynamo properties. What is needed is to relate the
dynamo action to some other characterization of the flow that better takes into
account the presence of the coherent structures. In this paper we demonstrate that
in certain circumstances this can be achieved; we discuss the general theory and we
illustrate this procedure for a certain class of flows.

The paper is organized as follows. In the next section we set up the theory and
introduce the concept of a ‘quick dynamo’ which is central in the development of
the theory. In § 3 we formulate a numerically tractable problem by considering 2.5-
dimensional dynamo action (i.e. dynamo action driven by a flow that is invariant in
one direction). We also describe a method for generating a complex velocity field with
both a random component and coherent structures using the active scalar equations.
In § 4 we describe the hydrodynamic properties of the resulting velocity fields for
different choices of the parameters and forcing functions. The associated dynamo
properties for these flows are described in § 5. In § 6 we verify the theory derived in
§ 2 by considering a dynamo driven by a filtered velocity that only contains a certain
range of scales. Concluding remarks are contained in § 7.

2. Turbulent dynamos – a phenomenological model
2.1. Quick dynamos

Much of what is known about dynamo action is related to the case where the velocity
has a single spatial scale. These velocities are characterized by a single magnetic
Reynolds number Rm = U�/η where U is the characteristic velocity and � is the
length scale of the flow. For these flows, dynamo action sets in if Rm exceeds some
critical value. If the magnetic Reynolds number is then increased the dynamo growth
rate increases and then we distinguish two different behaviours. Dynamos where the
growth rate remains bounded away from zero as Rm → ∞ are termed ‘fast dynamos’ –
otherwise they are termed ‘slow dynamos’ (see figure 1). The physical basis for this
distinction is that slow dynamos rely on diffusion to operate whereas fast dynamos do
not. As we shall see presently, in order to describe dynamos driven by velocities with
a range of characteristic scales, it is useful to introduce the idea of a quick dynamo.
A ‘quick dynamo’ is one that reaches a neighbourhood of its maximal growth rate
quickly as a function of Rm (as shown in figure 1b). In other words the ascent of
the growth rate is very steep, unlike the ’pedestrian dynamo’ also shown in figure 1b.
Note that quick dynamos may be either fast or slow and examples of both are given
in figure 1(a): the categorization of a dynamo as quick relies on the behaviour of the
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Figure 1. Schematic of growth rate σ as a function of Rm for a range of dynamos. (a) An
example of a fast dynamo (with the growth rate given by equation (2.5)) and a slow dynamo
where the growth rate tends to zero as Rm → ∞. (b) An example of a ‘quick’ dynamo where
the growth rate approaches its maximal value at a value close to its critical value and a
‘pedestrian’ dynamo where the growth rate is an extremely weak function of Rm.

growth rate for values of Rm a little larger than the critical one and has nothing to
do with the behaviour of the growth rate as Rm → ∞. It is important to note that the
natural unit for the dynamo growth rate is the inverse turnover time of the velocity
field, which for flows that exist on only one spatial scale is a well-defined quantity.

How can one adapt some of these ideas to a complex flow which, as discussed
above, is characterized by eddies and coherent structures on many spatial scales with
different scale-dependent turnover times and magnetic Reynolds numbers? Consider
for example the case where the velocity has an inertial range with a spectrum that is
characterized by a power law of the form

E(k) ∼ k−p. (2.1)

To fix ideas, the most famous example is Kolmogorov turbulence for which p = 5/3.
It is easy to verify that the velocity difference over a distance k−1 scales as

v(k) ∼ k−α, (2.2)

where α = (p − 1)/2. Progress can now be made by defining the local (i.e. on a scale
k−1) magnetic Reynolds number (Rm(k)) and turnover time (τ (k)) to be

Rm(k) ∼ k−(α+1) ∼ k−(p+1)/2, (2.3)

τ (k) ∼ k−(1−α) ∼ k−(3−p)/2. (2.4)

Thus it can be seen that for physically realistic values of p (i.e. −1 <p < 3) both the
magnetic Reynolds number and the turnover time decrease as the spatial scale gets
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smaller. This introduces an interesting conundrum: is the growth rate determined by
the large scales which have the largest magnetic Reynolds number but the longest
time scale or by the small scales with the smallest Reynolds number and the shortest
time scale. Immediately it can be seen from the expressions above that the answer will
depend on the slope of the turbulent spectrum p as it controls the relative amplitudes
of the local magnetic Reynolds number and the turnover time. In general it will also
depend on the specific properties of the velocity at every scale. However we argue
that if the dynamo velocities at each scale are quick as defined in the sense above
then some progress can be made towards identifying the scales that are important for
dynamo action.

To be specific, consider the case where each scale in isolation acts as a quick
dynamo, with dynamo action setting in at a magnetic Reynolds number of order
unity and reaching a large fraction of its maximal growth rate by Rm ∼ O(10–50).
This is not an unreasonable example as this type of behaviour has been found
in many studies of fast dynamo action (Galloway & Proctor 1992; Otani 1993;
Brummell, Cattaneo & Tobias 2001). We can model such a growth curve by setting

σ = (σmax − σmin) tanh (Rm/δ) + σmin (2.5)

where σmax is the maximum growth rate, σmin is the (negative) growth rate at Rm = 0
and δ is a fitting parameter that gives the dependence of growth rate on Rm. This is
in fact one of the growth curves shown in figure 1. It is now possible to calculate the
growth rate of an eddy of scale � = k−1 measured in units of the inverse turnover time
for the largest scales. For the specific case of the profile described by equation (2.5)
this growth rate is given by

σ = A0k
(1−α)

(
(σmax − σmin) tanh

(
A0k

−(α+1)

ηδ

)
+ σmin

)
(2.6)

where A0 is the (constant) amplitude of the largest scale for the velocity, i.e. v(k = 1).
This is shown in figure 2 for particular choices of spectral slope α. Note that there
is a well-defined maximum for this local growth rate at a finite k = k∗ �= 1 and this
identifies a special range of scales that are the fastest growing ones. It is easy to
verify that the condition for this curve to have such a turning point is α < 1 (p < 3)
which is exactly the condition for the velocity to be rough† (and indeed for the
turnover time to be a decreasing function of k as described above). This curve clearly
describes the growth rate of an eddy at spatial scale � = k−1 acting in isolation. How
does this relate to the dynamo properties of a flow that is made up of a collection
of eddies operating on a wide range of spatial scales? If there is no interaction at
all between the dynamo properties of the eddies at different scales then the curve
immediately identifies which eddy is responsible for the generation of magnetic field
in the turbulent ensemble of eddies and the maximum in the growth rate is that of the
corresponding magnetic field. If, on the other hand, the scales interact significantly
then the curve may be of little value and the dynamo properties of the full velocity
field must be considered. At the moment there is no rigorous theory on the degree of
interaction of dynamos operating on different scales, although some conjectures have
been proposed (Cattaneo & Tobias 2005). It is therefore worthwhile to study how

† The roughness exponent of a velocity field can easily be defined in terms of the scaling
properties of velocity differences with separation. Let δvq (r)= 〈|(v(x + r) − v(x)) · r/|r ||q〉, where
the average is, say, over the position x and time. It is then possible to construct velocities with
power-law scaling δv2(r) ∼ r2α , where α is the roughness exponent.



Dynamo action in complex flows: the quick and the fast 105

1.0

v (k) Rm (k)

τ (k) σloc (k)

0.1

100

103

102

101

100

2

1

0

–110–2

10–1

100 101

k k
102

100 101

k
1021 10

k
100

0 40 60 80 10020

Figure 2. Indentification of ‘local growth rates’. (a) Velocity difference v(k) = k−α for α = 0.25
(solid line), α =0.5 (dotted line), α = 0.75 (dashed line) and α = 1 (dot-dash line). (b) Local
magnetic Reynolds number Rm(k) = k−(α+1). (c) Local turnover time of an eddy at scale k
τ (k) = k−(1−α). (d) Local growth rate as defined by equation (2.6).

well the heuristic argument given above describes the dynamo action of a specific
example of a turbulent flow with eddies on a wide range of spatial scales.

3. Set-up of the model: formulation, equations and numerical scheme
There are many possible approaches to constructing a turbulent velocity of the

type described in the section above, i.e. one that encompasses a wide range of spatial
scales, ideally with a well-defined inertial range and non-trivial phase information
that leads to the formation of dynamic coherent structures. The most natural and
most realistic of these approaches is to solve the Navier–Stokes equations in three
dimensions at high Reynolds number. This could be undertaken for geophysical or
astrophysical flows in which the presence of rotation or stratification naturally leads
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to the formation of coherent structures. Indeed some steps in this direction have been
undertaken (Schekochihin et al. 2005). However, fully to reach the objectives set out
above is extremely expensive.

For example to achieve a flow with a well-defined inertial range together with
a resolved dissipative scale requires computations on the order of a few thousand
spectral modes in each spatial direction. Various alternatives can be considered. One
is to construct a synthetic three-dimensional velocity. This velocity then arises not
through the solution of the Navier–Stokes equations, but is assembled by generating
random numbers (with an amplitude determined by the required spectral slope) that
are the amplitudes of the Fourier coefficients of the velocity. These spectral coefficients
can be generated in such a way that the turbulent flow has well-defined turnover and
correlation times. This affords some savings as now no solution of the Navier–Stokes
equations is required and the induction equation may be solved in isolation. Moreover
for a synthetic velocity there is no need to include the dissipative scales for the flow and
this also leads to a reduction in the overall cost. However this is still a computationally
expensive approach as the three-dimensional induction equation is still to be solved.
In addition there is no obvious algorithm for synthesizing a velocity with non-trivial
phase relations; as shown by Thomson & Devenish (2005) this can lead to significant
differences between the Lagrangian statistics of the synthetic velocity relative to
the Navier–Stokes velocity even when the Eulerian properties are the same. Since
dynamo action is strongly influenced by the Lagrangian properties this may be cause
for concern. Another possibility is to generate the velocity not as the solution of
the fully resolved Navier–Stokes equations but of some large-eddy simulation (Ponty,
Politano & Pinton 2004). In this case the velocity on large scales has all the desirable
properties, with the saving mostly in the dissipative range. Calculations of this type,
though cheaper than direct numerical simulations are still expensive (Ponty et al.
2005). Moreover, the filtering of the velocity in the dissipative range relies on the
implicit assumption that these scales are unimportant for dynamo action. This is a
particularly delicate assumption when considering dynamos at low magnetic Prandtl
number where the central question is whether these scales are important or not.

From a numerical point of view, the ideal approach would be to solve the
Navier–Stokes and induction equations in two dimensions, but it is well known
that two-dimensional dynamo action is impossible (Zel’dovich 1957). However a
compromise can be reached by considering quasi-two-dimensional dynamo action, i.e.
dynamo action driven by a three-dimensional flow that only depends on two spatial
coordinates, and this is the approach we shall adopt here. For flows of this type the
induction equation is separable along the invariant coordinate, and so one can seek
solutions for the magnetic field of the form

B = b(x, y; t)eikzz + c.c., (3.1)

where c.c. stands for complex conjugate and z is the invariant direction. For any
value of the wavenumber kz the induction equation for b is now two-dimensional and
so extremely large values for the resolution may be achieved. This type of dynamo
action has been studied by many authors, primarily in the context of flows on a single
spatial scale (Roberts 1972). If the flow exhibits Lagrangian chaos then exponential
stretching occurs in the (x, y)-plane. The out-of-plane component of the velocity is
mostly responsible for the folding of the magnetic field. A number of velocities with
these properties are believed to be good candidates for fast dynamo action (Otani
1993; Galloway & Proctor 1992).
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The question still remains of how to generate a flow of the type described above,
with all the properties of turbulence discussed at the start of this section. Let us
consider the planar component of the flow. The natural approach would be to solve
the two-dimensional Navier–Stokes equations

qt + J (ψ, q) = ν∇2q + Gz (3.2)

where ν is a dimensionless measure of the viscosity proportional to the inverse
Reynolds number, Gz is the z-component of the applied couple, q(x, y, t) is the out-
of-plane (z)-component of the vorticity, ψ(x, y, t) is the streamfunction satisfying the
relation

q = −∇2ψ, (3.3)

and the planar velocity is then given by u = (u, v, 0) = ∇ × (ψez). The problem though
is that two-dimensional turbulence is somewhat peculiar and very different to three-
dimensional turbulence. The two-dimensional case is dominated by the inverse cascade
of energy (McWilliams 1984). Solutions take the form of large-scale vortices with a
very limited inertial range and little energy at small scales. Although the dynamo
properties of interacting large-scale vortices are of interest and have been studied
(Llewellyn-Smith & Tobias 2004) such flows are certainly not ideal for addressing
the question posed at the end of the last section. The presence of the inverse cascade
has been related to the non-locality of the Green’s function for the Laplacian in two
dimensions that occurs in the relationship between q and ψ given in equation (3.3).
However this can be alleviated by the following ‘trick’ that leads to the localization
of the Green’s function, namely replacing equation (3.3) with

q = −|∇|λψ, (3.4)

with λ< 2. In general equation (3.4) involves fractional derivatives, the physical
interpretation of which is not transparent. However the relationship between q and
ψ becomes clear when considering the Fourier transform of equation (3.4) whereby

q̂(k) = −|k|λψ̂(k), (3.5)

where q̂(k) and ψ̂(k) are the Fourier transforms of q and ψ respectively and k is
the modulus of the (two-dimensional) wave-vector. This system has been extensively
studied (Pierrehumbert, Held & Swanson 1995; Constantin, Nie & Schörghofer 1998)
for several values of λ �= 2, and for λ= 1 the resulting equations describe a physically
realizable flow (Held et al. 1995). The equations are often termed the active scalar
equations to contrast them with the case of passive scalar advection where there is no
direct relationship between ψ and q . It is well known that these equations for large
enough Reynolds number lead to velocities with power-law behaviour in the inertial
range. The exponent of the power-law relation is controlled by the parameter λ. It is
this property of the system that can be exploited to generate velocities with desired
spectral properties, while at the same time possessing non-trivial phase relations
leading to the formation of coherent structures.

The out-of-plane velocity w(x, y, t) is not set by such a procedure, but still needs to
be determined. One possibility is to note that the z-component of the Navier–Stokes
equations for a z-independent flow reduces to a scalar advection equation for w,
namely

wt + J (ψ, w) = ν∇2w + Fz. (3.6)
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Case λ ν kf Resolution

A 2 10−5 4 20482

B 1 10−5 4 20482

C 1 5 × 10−6 100 20482

Table 1. Hydrodynamic velocity fields.

Hence, subject to the assumption that the forcing Fz = Gz and that w satisfies the
same initial conditions as q (i.e. w(t = 0) = q(t = 0)), w remains equal to q for all
times. This suggests that a reasonable choice is to set w = q for all times.

We conclude this section by summarizing the strengths and weaknesses of utilizing
the velocity described above as a test of the theory derived in § 2. It is certainly
advantageous that the velocity can be solved for in two dimensions allowing a vast
range of spatial scales to be kept. This is particularly important when studying
dynamos in the limit of small magnetic Prandtl number where both large scales and
scales much smaller than the dissipative cutoff for the magnetic field must be kept.
A further advantage is that the procedure yields stucture with a long Lagrangian
correlation time. Weaknesses of the procedure adopted include the independence of
the velocity field of the z-coordinate and the assumption that the flow field is helical
(w = q), both of which may be thought of as promoting dynamo action. We believe
however that these assumptions do not affect the main conclusions of the paper and
we note that it is the coherent structures that best promote dynamo action that will
win out in any flow. For example in compressible convection dynamos, magnetic field
is preferentially generated by long-lived coherent elongated plumes where the vertical
velocity is correlated with the vertical vorticity.

4. The generation of the velocity field
The velocity field is generated in a periodic domain 0 � x, y < 2π by solving

the equations (3.2)–(3.4). The two-dimensional periodicity of the domain suggests
the implementation of pseudo-spectral techniques, which are extremely efficient
for nonlinear advection diffusion problems. Furthermore this affords the added
simplification that the relationship given by equation (3.4) is easily implemented
by imposing its analogue in spectral space, namely equation (3.5).

We have generated three velocity fields for the values of the parameters shown in
table 1. In all cases the forcing takes the form Gz =G0 cos kf x cos kf y with G0 = 0.1.
The calculations were started from static and integrated until a statistically steady
turbulent state was achieved, in which the ‘enstrophy’ (i.e. q) spectrum has converged
(cf. Pierrehumbert et al. 1995). Figure 3 shows density plots of q for the three cases
at a representative instant. Following common practice we illustrate the solutions by
showing q . However we note that the physical interpretation of these pictures requires
some care. For λ= 2 (figure 3a), q does represent the vertical vorticity, whereas for
λ=1 (figures 3b, c) q has no obvious physical meaning – although it does have the
dimensions of a velocity. The importance of the parameter λ can be understood by first
comparing figures 3(a) and 3(b). In Case A, which is two-dimensional Navier–Stokes
turbulence, the solution is dominated by the presence of two vortices with opposite
circulation, with filamentary vortex sheets in between. In contrast case B, which still
has large-scale vortices, has coherent structures on a wide range of spatial scales in
the intervening space. These secondary smaller vortices are the result of an instability
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Figure 3. Density plots for q(x, y) at a representative time in the evolution. (a) Case A where
λ= 2 and kf = 4 – this case corresponds to regular two-dimensional Navier–Stokes; (b) Case B
λ= 1, kf = 4 (large-scale forcing with a forward-cascade); (c) Case C with λ= 1, kf = 100
(small-scale forcing with an inverse-cascade).

of the vortex sheets. This instabilitybecomes more pronounced as λ decreases: as λ
decreases the velocity becomes more spatially localized relative to the vorticity and so
a given shear profile becomes more unstable (Pierrehumbert et al. 1995). Figure 3(c)
also shows large-scale vortices and fine-scale structure. However the physical nature
of this solution is completely different. In Case B (which is driven at large scales) the
small-scale structure arises as a consequence of the series of instabilities described
above resulting in a forward cascade. For Case C it is the small-scale structures that
are driven by the forcing directly and the large-scale structures are the result of an
inverse cascade. These differences are manifested in the q-spectra, which are shown in
figure 4. Figure 4(a) shows the spectrum for Case B; the spectrum for q shows a very
large and well-defined inertial range, with a spectral index of −1.83. By contrast, in
figure 4(b) for Case C the forcing wavenumber is clearly visible as well as a forward
spectrum with an index of −2.79 and an inverse cascade with an index of 0.99. For
comparison the spectrum for Case A has also been included in figure 4(a). It is clear
that for this case the inertial-range scales are not described by a power law and that
the small scales are not excited to the same degree as for Case B.
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Figure 4. Two-dimensional spectra for q (Eq (k)). (a) The spectrum for Case B (λ=1, kf = 4) –
the spectrum for Case A is included (as a dot-dashed line) for comparison. (b) Case C (λ=1,
kf = 100). For Case B a forward cascade is visible whilst for Case C both a forward and
inverse cascades are found.

5. Dynamo properties
The dynamo properties of the velocity fields generated in the previous section

are now investigated by solving the induction equation together with the evolution
equation for q . As the flows are incompressible, the induction equation takes the form

Bt + u · ∇B = B · ∇u + η∇2 B, (5.1a)

∇ · B = 0, (5.1b)

where η is the dimensionless magnetic diffusivity related to the inverse magnetic
Reynolds number. As mentioned above, the nature of the velocity allows separable
solutions of the induction equation of the form (3.1) where kz is now a parameter and
should not be confused with k which is the horizontal wavenumber. Equation (5.1)
is then solved as an initial value problem (with initial conditions given by a random
solenoidal magnetic field) and the growth rate σ is determined. Figure 5 shows σ

as a function of kz and Rm for Cases B and C. Here and for the rest of the paper
Rm is defined on the integral scale, and changes in Rm are achieved by changing the
diffusivity η. The behaviour of the growth curve is similar for the two cases. Near
the origin all the growth curves are positive and the growth rate increases with kz,
with a rate that itself increases with Rm. It is clear that for finite Rm all the growth
curves must become negative for large enough kz (as at high enough kz vertical
diffusion destroys field faster than advective processes can generate field). Hence for
all curves of this type there must be at least one value of kz for which the growth
rate is maximal. However one cannot exclude the possibility that more than one such
maximum exists and the curve is non-monotonic on either side of the maximum
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Figure 5. Growth rate as a function of kz for different values of η and different flows. (a) The
growth rate σ (kz) for Case B for three different values of η (η = 0.01 (crosses), η = 0.001
(diamonds), η = 0.0001 (asterisks)). (b) Case C for two different values of η (η = 0.001 (crosses)
and η = 0.0001 (asterisks)).

value. In general one also expects that the range of unstable wavenumbers increases
as a function of Rm. For instance, for Flow B for η = 0.001 the growth rate becomes
negative by kz = 6 whereas for η = 0.0001 all the wavenumbers investigated lead to
positive growth rates. For Case B (figure 5a) it is clear that as Rm is increased the
mode of maximal growth rate moves to larger and larger kz. Hence the preferred
vertical scale for the magnetic field is getting smaller and smaller as Rm increases.
This behaviour is different to that characterizing fast dynamos acting on one scale:
for example for the Galloway–Proctor flow the preferred vertical wavenumber stays
fixed at kz = 0.57 as Rm is increased. This behaviour for our flows is indicative of the
fact that, as Rm is increased, the length scale of the eddy that is important for the
generation of magnetic field is decreasing. This is discussed further in the conclusions.

A greater understanding of the role of the turbulent eddies in generating the
magnetic field can be gained by examining figure 6, which shows density plots of
Bx together with the corresponding density plots for the vertical velocity w (which
of course is set to the value of q). We stress again here that for λ=1 q has the
dimensions of velocity and not vorticity. Figure 6(a) shows w and Bx for Case B at
a representative time in the evolution. As noted before, the velocity field takes the
form of eddies on many scales (with different turnover times). The magnetic field (Bx)
also has a distinctive spatial pattern, with two main features being apparent. First,
the magnetic field appears to be generated preferentially around coherent eddies of a
certain size: the large eddies do not appear to be contributing much to the generation
of field, but regions of strong magnetic field always seem to be associated with edges
of the eddies on an intermediate scale. The second feature is that the magnetic field
at the edge of intermediate eddies takes the form of long thin filaments with a
characteristic width and length. Comparison of calculations at different values of Rm

and kz (not shown) demonstrates that the width of these magnetic filaments is largely
controlled by Rm. Indeed, although for large enough Rm the growth rate is a weak
function of kz, there is an interesting change in the morphology of the filaments as
kz is changed: for large kz the magnetic field has a more complicated structure in the
region of strong strain with many magnetic filaments occupying this region. It is to be
expected that the thickness of these filaments will scale as Rm−1/2, getting thinner as
Rm is increased; this change of scale for the widths of the filaments is manifested in
the spectrum of the field discussed later in this section. The length of the filaments is
a more complicated function of both Rm and kz, but in general is largely insensitive
to changes in Rm and a weak function of the vertical wavenumber kz. Figure 6(b),
which shows the flow and Bx for Case C, are even more striking. Here the two large
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Figure 6. Spatial form of the dynamo magnetic field. Density plots for q (left panels) and
Bx (right panels) showing the form of the magnetic field. (a) A representative point in the
evolution of Case B (with η = 0.0001 and kz =10). (b) Case C (again with η = 0.0001 and
kz = 10). (c) A close-up of a dynamo eddy and the form of the resulting magnetic field.

vortices do not appear to be directly involved at all in the generation of the magnetic
field. The magnetic field is clearly associated with eddies at an intermediate scale,
with one particular eddy playing a dominant role. Note that substantial magnetic field
generation is also achieved by various vortex streets of intermediate eddies between
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the two main vortices. Figure 6(c) shows a close-up of the eddy that is responsible
for much of the magnetic field generation and the corresponding magnetic field. This
vortex appears to be very efficient at generating magnetic field, with this field taking
on a distinctive spiral form. These images are entirely consistent with our picture of a
preferred band of ‘active’ velocity wavenumbers being responsible for the bulk of the
field generation. In this case the wavenumbers correspond to coherent vortices in the
flow of a certain size, with both larger and smaller vortices appearing to contribute
little to the generation process.

As noted above, complementary information can be gained about the form of
the magnetic field by examining the corresponding (two-dimensional) spectra, as
shown in figure 7. Here figure 7(a) shows the spectrum for the magnetic field for
Case B for the two smaller values of Rm corresponding to η = 0.01 and 0.001.
These spectra are calculated in the following manner. When the magnetic field
is growing exponentially (on average) two-dimensional spectra are calculated at a
number of different times during the exponential growth. The individual spectra are
then normalized (in such a manner that they take on the same value in the diffusive
sub-range) so that the exponential growth has been removed. The average of the
normalized spectra is then calculated and this is now representative of the typical
spectral form of the eigenfunction. Typically the calculated spectrum is the average of
twenty realizations. Although significant averaging has been performed, it is difficult
to achieve convergence to a well-defined average at the low wavenumbers (although
the averages at the high wavenumbers are certainly well converged). Figure 7(a)
shows that the form of the spectrum is typical of that for kinematic dynamos of this
type. There is a slight rise in the spectrum for the magnetic energy as k is increased
until the scale gets close to the diffusive cutoff. At this point the energy drops rapidly
as diffusion sets in. Here the difference in the value of η between the two curves is
manifested in the scale at which the diffusive cutoff occurs. Figure 7(a) also shows
for comparison the spectrum for q . It is clear from this that the diffusive cutoff
for the magnetic field occurs at a much larger scale than that for the velocity field.
This is exactly the regime of interest if the magnetic Prandtl number (Pm = ν/η) is
small. What we have clearly demonstrated here is that the dynamo has no problem
in working efficiently when its (ohmic) diffusive cutoff is in the middle of the inertial
range for the velocity – we shall discuss this further in the conclusions. Figure 7(b)
shows the magnetic spectrum for all three values of η = 0.01, 0.001 and 0.0001, also
for Case B. Again the characteristic shape of the spectrum is apparent at the highest
Rm, although the diffusive cutoff has moved to higher values of k. For η = 0.0001,
the diffusive cutoff for the magnetic field is just to the left (i.e. at lower values of k)
of that for the velocity, so the dynamo is working at low (although not tiny) Pm.

6. Filtered dynamos
The theory of § 2 described how the turbulent dynamo can be envisaged as a

competition between large-scale slow eddies and smaller-scale fast eddies – the large
scales are dynamos but have a long turnover time and hence a smaller growth rate
whilst the small scales are not at a high enough Rm to be dynamo unstable – and
how a preferred ‘active dynamo’ scale can be identified. For the example of figure 2,
where the dynamo velocity field consists only of a inertial range with a well-defined
spectral slope this ‘active dynamo’ scale can be identified unambiguously. This process
is, however, non-trivial in a realistic turbulent flow and identification of a ‘dynamo
scale’ requires some further analysis. The numerical examples of the previous section
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Figure 7. Spectra of the magnetic field for different values of η, corresponding to Case B
with kz = 10. (a) The spectra of the magnetic field (normalized as described in the text) for
η = 0.01 (dashed line) and η =0.001 (dotted line). As η is decreased the dissipative scale moves
to the right. Shown for comparison is the spectrum of q (solid line). Note that the dissipative
scale for the magnetic field lies in the inertial range of the turbulence. (b) The spectrum for
the magnetic field for all three values of η = 0.01 (dashed), 0.001 (dotted) and 0.0001 (solid).

indicate that the magnetic field generation arises as a result of the eddies in the flow
of a certain spatial scale (see figure 6), eddies on a larger scale being ‘too slow’ whilst
smaller eddies being ‘too weak’. The aim of this section is to formalize the general
picture described above.

We claim that the figures showing magnetic field and velocity suggest that certain
eddies are responsible for the generation of magnetic field in our turbulent dynamo.
How is it possible to test such a claim? The ideal approach would be to take the
given velocity field and simply remove the eddies that are believed to be responsible
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for the growth of magnetic field. Such a procedure would invariably have a significant
effect on the form and growth rate of the dynamo-generated magnetic field – with the
growth rate dropping significantly as the eddies are removed. It is however impractical
to remove specific eddies from a velocity field in a computationally efficient manner
(although it may be possible using wavelet analysis). Instead we adopt the procedure
of filtering the velocity field in spectral space in the induction equation, i.e. we still
solve the full evolution equation for q , but pass the velocity through a filter before
putting it into the induction equation. Hence only certain wavenumbers from the
velocity are allowed to drive the growth of magnetic field. We proceed by examining
how the dynamo growth rate changes for a representative dynamo as the velocity field
becomes progressively more filtered. We choose as a basic dynamo state the velocity
field given by Case B, and set η = 0.001 and kz = 10.0 (as shown in figures 6 and 7).
We choose to implement both a high-pass and low-pass filter on the velocity, that is
we take the full velocity field as generated by the evolution equation for q and filter
off either the high wavenumbers or the low wavenumbers. Examples of the velocity
fields that are achieved by filtering are shown in figure 8. Figure 8(a–d) shows the
effect of filtering off the low wavenumbers for four different values of the cutoff kfil ;
the filter adopted here is a Heaviside filter where all the modes with k < kfil are set
to zero. It is clear that filtering off the low wavenumbers leads to the velocity field
being concentrated on smaller and smaller scales, although it is still possible to see
the presence of coherent structures on small scales here. It is also possible to see the
‘ghost’ of the large-scale coherent eddies in the flow as holes in the small-scale flow.
Figure 8(e)–(h) shows the corresponding velocity field when the high wavenumbers
are filtered off (i.e. all modes with k > kfil are set to zero). As expected filtering off the
very highest wavenumbers appears to have little effect on the form of the velocity field
(the wavenumbers have little energy associated with them and are on exceptionally
small scales). As kfil is decreased the filtering does have a noticeable effect on the
form of the velocity field, with the large-scale structures becoming more blurred at
the edges by the time kfil ≈ 50. Further decrease in the spectral cutoff leads to the
successive removal of coherent structures of a given size, until only the k =1 mode is
kept in each direction (bottom right panel).

We proceed by selecting these velocities as inputs for the induction equation and
calculating the corresponding growth rates and generalized eigensolutions. The results
are shown in figures 9 and 10. Our conjecture in § 2 is that much of the dynamo growth
is the result of flows (eddies) of a certain scale (in a certain band of wavenumbers).
If this is the case then filtering off modes from the velocity field that are larger or
smaller than this scale should have little effect on either the growth rate or the form
of the generated magnetic field. It is to be expected that only when the active dynamo
scales are removed from the velocity field will the growth rate and eigensolution
change significantly, with the growth rate being reduced. Figure 9 shows the growth
rate σ as a function of the cutoff kfil for both the case when low wavenumbers are
filtered off (a) and when high wavenumbers are filtered off (b). In this plot error bars
are included in the values of the growth rate as it is difficult to calculate precisely
the dynamo growth rate in filtered flows. Figure 9(a) (when the high wavenumbers
are kept) should be read from the left. For kfil =0 all the modes are kept and the
growth rate is the same as that for the full velocity field. As kfil is increased the
growth rate begins to decrease slightly (but remains unchanged within the error bars)
until kfil ≈ 10–20. For larger values of kfil the dynamo growth rate is significantly
reduced and the dynamo has effectively switched off by kfil ≈ 60. Of more interest is
the behaviour demonstrated in figure 9(b) for the case where the low wavenumbers



116 S. M. Tobias and F. Cattaneo

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
i
g
u
r
e

8
.
F
il
te

re
d

v
el

o
ci

ty
fi
el

d
s.

D
en

si
ty

p
lo

ts
o
f

th
e

fi
lt
er

ed
v
er

ti
ca

l
v
el

o
ci

ti
es

(w
=

q
)

a
t

a
re

p
re

se
n
ta

ti
v
e

m
o
m

en
t

in
ti
m

e.
(a

–
d
)

T
h
e

v
el

o
ci

ty
w

it
h

th
e

lo
w

w
a
v
en

u
m

b
er

s
(k

<
k
fi
l)

fi
lt
er

ed
o
ff

fo
r

(a
)

k
fi
l
=

0
,
(b

)
1
,
(c

)
1
0

a
n
d

(d
)

5
0
.
(e

–
h
)

T
h
e

v
el

o
ci

ty
w

it
h

th
e

h
ig

h
w

a
v
en

u
m

b
er

s
(k

>
k
fi
l)

fi
lt
er

ed
o
ff

fo
r

(e
)

k
fi
l
=

2
0
0
,
(f

)
5
0
,
(g

)
1
0

a
n
d

(h
)

1
.



Dynamo action in complex flows: the quick and the fast 117

(a) (b)
1.0

0.8

0.6

σ

0.4

0.2

0 20 40
kfil

60 80 0 100 200 300 400 500
kfil

0

0.8

0.6

0.4

0.2

0

–0.2

Figure 9. growth rate σ versus kfil . (a) The case where the large-scale modes (k < kfil ) are
filtered off; (b) the case where the small-scale modes (k > kfil ) are filtered off. The error bars in-
dicate the maximum and minimum growth rates over intermediate sub-intervals of the exponen-
tial growth.

are kept and the high wavenumbers are filtered off. This figure should be read from
the right. For high kfil the velocity field is largely unaffected and the growth rate
remains that for the full velocity field. As kfil is decreased, more and more modes are
filtered out, but this has a very small effect on the growth rate for a large range of
values of kfil (30 � kfil � 600) – it is only when the filter acts to remove the ‘active
dynamo scales’ at kfil ≈ 20–30 that the growth rate drops significantly. This result
deserves some immediate discussion. For the full velocity we demonstrated earlier
that the diffusive cutoff for the magnetic field lay in the inertial range of the turbulent
velocity field. The dynamo therefore corresponded to one operating at low magnetic
Prandtl number Pm. As the velocity field becomes successively more filtered, the
cutoff moves to large scales and eventually lies significantly to the left of the resistive
cutoff for the magnetic field. At this point the dynamo corresponds to one operating
at high magnetic Prandtl number Pm, where the velocity is smooth on the scale of
the boundary layer for the magnetic field. It is often conjectured that the addition of
velocity scales to the right of the dissipative cutoff for the magnetic field will have the
effect of switching off the dynamo. This is certainly not the case here and dynamos
at low Pm will therefore work just as efficiently as those at high Pm providing that
the ‘active dynamo scales’ (i.e. scales in the turbulent velocity where Rm >Rmc) are
still present in the turbulent cascade. We shall return to this point in the discussion.

The effects of filtering the velocity are also apparent in the form of the magnetic
field, as shown in figure 10. This shows Bx for the case when the high wavenumbers
are filtered off (i.e. this is the case corresponding to the velocities in figure 8a–d). For
high values of kfil , where the velocity field and growth rate do not differ significantly
from those for the full velocity, the magnetic field (figure 10a, b) unsurprisingly is
similar to that for the full velocity with strong magnetic fields appearing in filaments
around the eddies with a size determined by the active dynamo scale. When the active
eddies are removed by filtering, however, the magnetic field takes on a rather different
form, shown most clearly in figure 10(d). Here the magnetic field still takes the form
of filamentary structures, but now these appear in bands that have a typically larger
length scale associated with them. The relative size of the magnetic filaments to these
bands of magnetic field is now small, with many thin filaments of oppositely directed
field making up a band. This structure of the field can be well understood within the
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(a) (b)

(c) (d)

Figure 10. Density plots of the magnetic field Bx for the cases shown in figure 8(e–h).

framework of thetheory. As the active wavenumbers are excluded from the velocity
field by the filtering, the length scales in the velocity that are important for the
dynamo move to larger values – hence the bands of magnetic field are associated
with large scales. These larger-scale eddies (although slow) are at high Rm so any
filamentary magnetic field associated with them will be on a fine scale.

At this point we note that the arguments above are complicated somewhat by the
fact that in all of the filtering we have kept the wavenumber kz at a fixed value.
Of course in reality the results should be optimized over all kz to be compared with
fully three-dimensional magnetic fields. Indeed one may expect that as the velocity is
filtered the preferred value of kz will change somewhat, as described in the discussion.
However it is no simple task to perform these calculations (which require significant
resources) at a wide range of kz and this is beyond the scope of this paper. Moreover,
the fact that these calculations were performed at low values of η = 0.0001 and
therefore high Rm reduces the sensitivity to kz with many values of kz having similar
growth rates.

What we have shown above is therefore that there does appear to be a range of
wavenumbers that is largely responsible for the generation of magnetic field in this
flow. The proposition of § 2 is that these wavenumbers can be identified as the fastest
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Figure 11. ‘Local growth rate’ σloc as a function of k for η = 0.01, 0.001 and 0.0001. In each
case the local Rm and τ are calculated from the spectrum (given in figure 4a) and the local
growth rate is found by employing the formula in equation (2.5).

eddies for which Rm is greater than its critical value. In that section we identified
the ‘active wavenumbers’ by assuming a given power-law spectrum for the turbulence
and a typical form for the growth curve as a function of Rm. For the turbulent flow
analysed here there is no need to assume the form of the spectrum as it has been
calculated directly. The ‘active wavenumbers’ can again therefore be identified by
determining Rm(k) and τ (k) and assuming a growth-curve dependence of σ on Rm

(such as that used before in equation (2.5) and shown in figure 1). The results are
shown in figure 11 for three representative values of η. As η is decreased the band of
‘active wavenumbers’ increases and the maximum growth rate moves to higher values
of k. For the two smallest values of η the preferred wavenumbers are in the range
10 � k � 100, consistent with the value found by the filtering. We stress again that
the process here is sensitive to the precise form assumed for the growth curve as a
function of Rm, but computations with different (realistic) forms of the growth curve
identify similar scales as being important for dynamo action. Hence we are confident
that the numerical results are consistent with the scenario proposed in § 2.

7. Conclusions
In this paper we have presented a theory for the behaviour of kinematic dynamos

driven by complex flows consisting of a spectrum of eddies and a hierarchy of
coherent structures. This theory identifies the spatial scales that are important for
dynamo action and leads directly to the growth of magnetic field. The theory is
derived by considering each scale acting as a dynamo in isolation; at each scale the
growth rate of the associated magnetic field is a function both of the local Rm for
the eddy and the local turnover time τc. Because both the local magnetic Reynolds
number and the turnover time are increasing functions of spatial scale the dynamo
growth is then determined by a competition between large (high Rm) slow (large τc)
eddies and small (low Rm) fast (small τc) eddies. We propose that the dynamics is
then often controlled by eddies on an intermediate scale where the local magnetic
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Reynolds number is close to the critical Rm for the onset of dynamo action at that
scale. We identify this scale as the ‘active dynamo scale’. It is now apparent that for
flows in a turbulent spectrum the dynamo properties are set by the behaviour of
the local growth curve for a value of Rm just above critical. It is therefore useful to
introduce the concept of a ‘quick dynamo’; this is a dynamo where the growth rate
reaches a large fraction of its maximum value for Rm ∼ Rmc. We note again here
that a dynamo may be ‘quick’ whether it is fast or slow! The definition of quick does
not take into account the behaviour of the growth rate at large Rm. If the eddies
in isolation act as quick dynamos (which we believe to be the generic case) then the
identification of a sharp band of active dynamo scales in the turbulent spectrum is
possible.

In order to test the applicability of the above theory, we conducted a systematic
investigation of the dynamo properties of a range of turbulent flows that consisted of
a spectrum of coherent eddies. The flows were constructed to be 2.5-dimensional and
with the property that the spectral slope was a function of a ‘localization parameter’ λ.
The nature of the flows chosen and the use of massively parallel computers facilitated
the investigation of the dynamo properties for extreme values of the parameters. For
example, both the fluid and magnetic Reynolds numbers can be chosen to be extremely
large whilst the magnetic Prandtl number can be chosen to be small (so that the
dissipative cutoff for the magnetic field occurs in the middle of the inertial range for
the turbulence). We find that, as predicted by the theory, the growth of the magnetic
field appears to be associated with eddies in the turbulent spectrum of a certain size.
The size of these active eddies (and indeed the scale of the associated magnetic field)
changes as Rm is increased, in contrast to fast dynamo studies conducted for velocity
acting at one scale (e.g. Galloway & Proctor 1992) where the scale of the field remains
fixed as Rm changes. We also note that the flows remain efficient kinematic dynamos
even when Pm � 1.

As a final test of the theory, the velocity field was then filtered and used as a dynamo
in an attempt to identify and isolate the active dynamo scales. Both a high-pass and
low-pass filter were used on the velocity. Two interesting results were identified by this
procedure. First it allowed the unambiguous identification of the active dynamo scale
as predicted by the theory. This occurs at an intermediate scale where the local Rm is
of the same order as Rmc and the local turnover time is relatively short. Moreover it
was demonstrated, by filtering off the high wavenumbers from the velocity, that the
growth rate is not sensitive to whether the dissipative cutoff for the magnetic field
is at a larger or smaller scale than that for the velocity (i.e. whether the velocity is
rough or smooth on the scale of the magnetic dissipation). The dynamo behaviour is
completely controlled by the eddies on the active dynamo scales and it makes little
difference to this behaviour whether an inertial range exists at scales smaller than
the dissipative cutoff for the field. Thus, dynamo action in a velocity comprising a
spectrum of coherent eddies is controlled by the eddies acting on the active dynamo
scales which can be identified by examining the competition between large slow eddies
and small quick ones.

These findings are particularly relevant to the problem of dynamo action at small
values of Pm. It is useful to distinguish between two cases: one (which has been
extensively studied in the past) in which the velocity is mostly random, i.e it is mostly
defined by the inertial-range spectrum; and one, more relevant to astrophysical and
geophysical flows, in which long-lived coherent structures are also present, for which
this is the first study. In the random case, as shown analytically by Boldyrev &
Cattaneo (2004), the determining factor for the critical magnetic Reynolds number
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for dynamo action is the roughness exponent of the velocity defined on a range of
spatial scales comparable to the scales on which reconnection occurs. According to
this picture, as the magnetic Prandtl number decreases through unity, the roughness
exponent of the velocity at the relevant dynamo scales changes from unity (smooth
velocity) to some value less than unity characteristic of the velocity inertial range. The
critical magnetic Reynolds number then shows a corresponding increase. Crucially,
once the magnetic Prandtl number is small enough to make the velocity at the
dynamo scale rough, further decreases in Pm have no effect on the critical value of
Rm. These conclusions have been verified numerically by Ponty and collaborators
(Ponty et al. 2005) who have considered dynamo action with decreasing values of Pm

by constructing the velocities by solving the fully resolved Navier–Stokes equations
for moderate values of Pm, and filtered (momentum) equations for small values of
Pm. As noted in the introduction, studying dynamos in the context of a filtered
momentum equation makes the assumption that the small scales in the velocity are
unimportant. As predicted by Boldyrev & Cattaneo (2004), the computed value of
the critical magnetic Reynolds number increased sharply as Pm decreases through
unity with a subsequent levelling off for smaller values of Pm. By contrast, in the
case in which coherent structures are present, what matters is whether the structures
are quick dynamos or not. However, in this paper we have postulated and verified
numerically that, just as in the random case, the presence of structures on scales much
smaller than the active dynamo scales does not significantly alter the overall dynamo
properties.

Finally, we should note that the idea of the fast dynamo limit, in which for a fixed
velocity one considers the limit of infinite Rm, is inconsistent with dynamo action at
small Pm. Once the velocity has been fixed, increasing Rm is equivalent to increasing
Pm. One could, in principle, consider the abstract case of a velocity field with an
infinity spectrum, i.e. one with no high-wavenumber cutoff; in this case, it is clear
from the arguments presented above that the growth rate would increase without
bounds as Rm → ∞.
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